Quick
Reference

for

Verilog- HDL

Rajeev Madhavan
AMBIT Design Systems, Inc.

D)

Released with permission from
Automata Publishing Company

San Jose, CA 95129

Quick
Reference

for

Verilog® HDL

Rajeev Madhavan
AMBIT Design Systems, Inc.

Design Automation Series

Released with Permission
from

Automata Publishing Company
San Jose, CA 95129

Cover design: Sam Starfas
Printed by: Technical Printing, Inc. Santa Clara
Copyright ©1993, 94, 95 Automata Publishing Company

UNIX isaregistered trademark of AT& T
Verilog is aregistered trademark of Cadence Design Systems, Inc.

m Copyright ©1993, 94, 95 Automata Publishing Company
Published by Automata Publishing Company

In addition to this book, the following HDL books are available
from Automata Publishing Company:

1. Digital Design and Synthesiswith Verilog HDL
2. Digital Design and Synthesiswith VHDL

For additional copies of this book or for the source code to the
examples, see the order form on the last page of the book.

This book may be reproduced or transmitted for distribution provided
the copyright notices are retained on al copies. For al other rights
please contact the publishers.

Automata Publishing Company

1072 S. Saratoga-Sunnyvale Rd, Bldg A107
San Jose, CA 95129

Phone: 408-255-0705

Fax: 408-253-7916

Printed in the United States of America
1098765432

ISBN 0-9627488-4-6

Quick Reference for Verilog HDL

Preface

Thisisabrief summary of the syntax and semantics of the Ver-
ilog Hardware Description Language. The summary is not
intended at being an exhaustive list of al the constructsand is
not meant to be complete. This reference guide also lists con-
structs that can be synthesized. For any clarifications and to
resolve ambiguities pl ea@refer to the Verilog Language Refer-
ence Manual, Copyright™~’ 1993 by Open Verilog Interna-
tional, Inc. and synthesis vendors Verilog HDL Reference
Manuals.

In addition to the OVI Language Reference Manual, for further
examples and explanation of the Verilog HDL, the following
text book is recommended: Digital Design and Synthesis With
Verilog HDL, Eli Sternheim, Rajvir Singh, Rajeev Madhavan
and Yatin Trivedi, Copyright™=’ 1993 by Automata Publishing
Company.

Rajeev Madhavan

Copyright ©1993, 1994, 1995 Automata Publishing Company.

Quick Reference for Verilog HDL

Quick Reference for Verilog HDL

Quick Reference
for

Verilog HDL

1.0

2.0
30
4.0
5.0
6.0

7.0

8.0
9.0
10.0
11.0

12.0

13.0
14.0

15.0

Lexical EIBMENtScocviveeereriieeeresis e 1
LA Integer LiteralS. .o 1
1.2 DAB TYPES....ecevereerierierieeieeieee et seeas 1

Registers and NELS ... 2

Compiler DIFECHIVES......covveirieerieereeere e 3

System Tasks and FUNCLIONS...........cceovvereeereeneeseeeseeseeeneens 4

Reserved KeyWOrds..........covereiccrrerieeee e 5

Structures and Hierarchyccoecveevinnennensenecnesecnine 6
6.1 Module DeClarations..........cccovreeeeeneriseeeseneseseeeesesenes 6
6.2 UDP DeClarations...........ccceeevrieecinnsiecieninseeesenns 7

EXpressions and OPeratorsccovereereeerereseneseseseneesenes 10
7.1 Parallel EXPreSSionsS.......cccoeeuerrinenrerisieessisierenenenas 13
7.2 Conditional Statementsccovveeeeerirereneerenesenienenes 13
7.3 L00PING SAEMENLS......c.cveverereririererereresiseerieeeeererenenas 15

Named Blocks, Disabling BIOCKS..........cccoceeereirerneneeneenne 16

Tasks and FUNCLIONS..........ceirerieieeenisieieeeresee e 16

ContinOUS ASSIGNMENLS.......c.cuevivrierererernriererereseseeeseeeeserenenenas 18

Procedural ASSIgNMENES.......cooveviererereereeer e 18
11.1 Blocking Assignment 19
11.2 Non-Blocking AsSignmentccoeeereeneeereeneenenes 19

Gate Types, MOS and Bidirectional Switches..............c......... 19
12.1 Gate Delays

SPECITY BIOCKS......iiceeeeieiceieee e

Verilog Synthesis CONSLIUCES.........coceececerererieieeierereesesesenenes 23
14.1 Fully Supported CONnstructs.........ccoceevreeereeereeereenenes 23
14.2 Partially Supported CONStrUCES........c.cvvverererereneceeeee 24
14.3 Ignored CONSLIUCESc..cuvvveeereeereeereneeseeie e 25
14.4 Unsupported CONSLIUCES..........ccceuerererrerermrereseseerenes 25

TNOEX 1.t 27

All rightsreserved. This document isintended as a quick
reference guide to the Verilog HDL. Verilog® isareg-
istered trademark of Cadence Design Systems, Inc.

Use and Copyright

Copyright (c) 1994, 1995 Rajeev Madhavan
Copyright (c) 1994, 1995 Automata Publishing Company

Permission to use, copy and distribute this book for any
purpose is hereby granted without fee, provided that

(i) the above copyright notices and this permission
notice appear in al copies, and

(if) the names of Rajeev Madhavan, Automata Publish-
ing and AMBIT Design Systems may not be used in any
advertising or publicity relating to this book without the
specific, prior written permission of Rajeev Madhavan,
Automata Publishing and AMBIT Design Systems.

THE BOOK ISPROVIDED "AS-IS' AND WITH-
OUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITH-
OUT LIMITATION, ANY WARRANTY OF MER-
CHANTABILITY ORFITNESSFOR A PARTICULAR
PURPOSE.

IN NO EVENT SHALL RAJEEV MADHAVAN OR
AUTOMATA PUBLISHING OR AMBIT DESIGN
SYSTEMSBE LIABLE FOR ANY SPECIAL, INCI-
DENTAL, INDIRECT OR CONSEQUENTIAL DAM-
AGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE,
PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THE-
ORY OF LIABILITY, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OF THIS BOOK.

Quick Reference for Verilog HDL

1.0 Lexical Elements

Thelanguage is case sensitive and all the keywords are lower case.
White space, namely, spaces, tabs and new-lines are ignored. Verilog
has two types of comments:

1. Oneline comments start with // and end at
the end of theline

2. Multi-line comments start with /* and end
with */

Variable names have to start with an alphabetic character or underscore
followed by alphanumeric or underscore characters. The only excep-
tion to this are the system tasks and functions which start with adollar
sign. Escaped identifiers (identifier whosefirst charactersis abackslash
(' \)) permit non a phanumeric charactersin Verilog name. The
escaped name includes al the characters following the backslash until
the first white space character.

1.1Integer Literals

Binary literad 2'b1z

Octal literal 27017
Decimal literal 9 or 'd9
Hexadecimal literal 3-h189

Integer literals can have underscores embedded in them for improved
readability. For example,

Decimal literal 24 o000

1.2 Data Types

The values z and Z stand for high impedance, and x and X stand for
uninitialized variables or nets with conflicting drivers. String symbols
are enclosed within double quotes (“string”).and cannot span multi-
plelines. Real number literals can be either in fixed notation or in sci-
entific notation.

Real and Integer Variables example

real a, b, ¢ ; // a,b,c to be real

integer j, k ; // integer variable
integer i[1:32] ; // array of integer variables

Quick Reference for Verilog HDL

Time, registers and variable usage

time newtime ;
/* time and integer are similar in functionality,
time is an unsigned 64-bit used for time variables

*/

reg [8*14:1] string ;
/* This defines a vector with range
[msb_expr: lsb_expr] */

initial begin
a=0.5; // same as 5.0e-1. real variable
b 1.2E12 ;
c 26.19 60 _e-11 ; // _'s are
// used for readability

string = “ string example ” ;
newtime =Stime;
end

2.0 Registersand Nets

A register storesits value from one assignment to the next and is used
to model data storage elements.

reg [5:0] din ;
/* a 6-bit vector register: individual bits
din[5],.... din[0] */

Nets correspond to physical wires that connect instances. The default
range of awire Or reg isone bit. Nets do not store values and have to
be continuously driven. If anet has multiple drivers (for example two
gate outputs are tied together), then the net value is resolved according
toitstype.

Net types
wire tri
wand triand
wor trior
trio tril
supply0 supplyl
trireg

For awire, if adl the drivers have the same value then the wire
resolvesto thisvalue. If al the drivers except one have avalue of z
then the wire resolvesto the non z value. If two or more non z drivers
have different drive strength, then the wire resolvesto the stronger
driver. If two drivers of equal strength have different values, then the

Quick Reference for Verilog HDL

wire resolvesto x. A trireg net behaveslike awire except that
when al the drivers of the net are in high impedance (z) state, then the
net retainsitslast driven value. trireg ’s are used to model capaci-
tive networks.

wire netl ;
/* wire and tri have same functionality. tri is
used for multiple drive internal wire */

trireg (medium) capacitor ;
/* small, medium, weak are used for charge
strength modeling */

A wand net or triand net operates asawired and (wand) , and awor
net or trior net operatesasawired or (wor), trio and tril nets
model netswith resistivepulldown or pullup devicesonthem. When
atrio netisnot driven, thenitsvalueis0. Whenatril netisnot
driven, thenitsvalueis 1. supplyo and supply1 model netsthat are
connected to the ground or power supply.

wand net2 ; // wired-and

wor net3 ; // wired-or

triand [4:0] net4 ; // multiple drive wand
trior net5 ; // multiple drive wor

tri0 neté ;

tril net7 ;

supply0 gnd ; // logic 0 supply wire
supplyl vece ; // logic 1 supply wire

Memories are declared using register statements with the addressrange
specified as in the following example,

reg [15:0] meml6X512 [0:511];

// l6-bit by 512 word memory

// meml6X512[4] addresses word 4

// the order lsb:msb or msb:1lsb is not important

The keyword scalared alows accessto bits and parts of abus and
vectored alows the vector to be modified only collectively.

wire vectored [5:0] neta;
/* a 6-bit vectored net */
tril vectored [5:0] netb;
/* a 6-bit vectored tril */

3.0 Compiler Directives

Verilog has compiler directives which affect the processing of theinput

Quick Reference for Verilog HDL

files. The directives start with agrave accent (*) followed by some
keyword. A directive takes effect from the point that it appearsin the
file until either the end of al thefiles, or until another directive that
cancels the effect of the first one is encountered. For example,

‘define OPCODEADD 00010

This defines amacro named opcopeapp. When the text * 0PCODEADD
appearsin thetext, then it isreplaced by 0oo010. Verilog macros are
simple text substitutions and do not permit arguments.

“ifdef SYNTH <Verilog code> ‘endif

If “synTH" isadefined macro, then the Verilog code until ‘endif is
inserted for the next processing phase. If ““ syNTH" isnot defined macro
then the code is discarded.

“include <Verilog files>

Thecodein <verilog files isinserted for the next processing
phase. Other standard compiler directives are listed below:

‘resetall - resetsall compiler directivesto default values
‘define - text-macro substitution
‘timescale 1ns / 10ps - specifiestime unit/precision
‘ifdef, ‘else, ‘endif - conditional compilation
‘include - fileinclusion
‘signed, ‘unsigned - operator selection (OVI 2.0 only)
‘celldefine, ‘endcelldefine - library modules
‘default_nettype wire - default net types
‘unconnected drive pullO|pulll,
‘nounconnected_drive - pullup or down unconnected ports
‘protect and ‘endprotect - encryption capability
‘protected and ‘endprotected - encryption capability
‘expand_vectornets, ‘noexpand_vectornets,
‘autoexpand vectornets - vector expansion options
‘remove_gatename, ‘noremove_gatenames
- remove gate names for more than one instance

‘remove netname, ‘noremove netnames

- remove net names for more than one instance

4.0 System Tasks and Functions

System taska are tool specific tasks and functions..

Sdisplay(“Example of using function”) ;
/* display to screen */
Smonitor (Stime, “a=%b, clk = %b,
add=%h”,a,clk,add); // monitor signals
$Ssetuphold(posedge clk, datain, setup, hold) ;
// setup and hold checks

Quick Reference for Verilog HDL

A list of standard system tasks and functions are listed below:

$display, Swrite - utility todisplay information
$fdisplay, $fwrite - writetofile
$strobe, $fstrobe - display/writesimulation data
$monitor, $fmonitor - monitor, display/writeinformationtofile
Stime, $realtime - current Simulationtime
$finish - exitthesimulator
$stop - stop thesimulator
$setup - setup timing check
$hold, $width- hold/width timing check
$setuphold - combineshold and setup
$readmemb/S$readmemh - read stimulus patternsinto memory
$sreadmemb/$sreadmemh - load datainto memory
Sgetpattern - fast processing of stimulus patterns
$history - print command history
$save, Srestart, S$incsave

- saving, restarting, incremental saving
$scale - scaling timeunitsfrom another module
$scope - descend to aparticular hierarchy level
$showscopes - completelist of named blocks, tasks, modules...
$showvars - show variablesat scope

5.0 Reserved Keywords

The following lists the reserved words of Verilog hardware description
language, as of OVI LRM 2.0.

and always assign attribute
begin buf bufifo bufifl
case cmos deassign default
defparam disable else endattribute
end endcase endfunction endprimitive
endmodule endtable endtask event

for force forever fork
function highz0 highzl if
initial inout input integer
join large medium module
nand negedge nor not
notifo notifl nmos or

output parameter pmos posedge
primitive pulldown pullup pullo
pulll rcmos reg release
repeat rnmos rpmos rtran
rtranifo rtranifl scalared small
specify specparam strong0 strongl
supply0 supplyl table task

tran tranifo tranifl time

tri triand trior trireg
trio tril vectored wait

wand weak0 weakl while
wire wor

Quick Reference for Verilog HDL

6.0 Structuresand Hierarchy

Hierarchical HDL structures are achieved by defining modules and
instantiating modules. Nested module definitions (i.e. one module defi-
nition within another) are not permitted.

6.1 Module Declar ations

The module name must be unique and no other module or primitive can
have the same name. The port list is optional. A module without a port
list or with an empty port list istypicaly atop level module. A macro-
module is a module with aflattened hierarchy and is used by some sim-
ulators for efficiency.

module definition example

module dff (qg,gb,clk,d, rst);
input clk,d,rst ; // input signals
output g,gb ; // output definition

//inout for bidirectionals

// Net type declarations
wire dl,dbl ;

// parameter value assignment
paramter delayl = 3,
delay2 = delayl + 1; // delay2
// shows parameter dependance

/* Hierarchy primitive instantiation, port
connection in this section is by
ordered list */

nand #delayl nl(cf,dl,cbf),
n2 (cbf,clk,cf,rst);
nand #delay2 n3(dl,d,dbl,rst),
n4 (dbl,dl, clk,cbf),
n5 (g, cbf,gb) ,
né6 (gb,dbl,q, rst) ;

/*%**%%x for debuging model initial begin
#500 force dff_lab.rst = 1 ;
#550 release dff lab.rst;
// upward path referencing
end ********/

endmodule

Quick Reference for Verilog HDL

Overriding parameters example

module dff lab;

reg data,rst;

// Connecting ports by name. (map)

dff dl1 (.gb(outb), .g(out),
.clk(clk), .d(data), .rst(rst)) ;

// overriding module parameters

defparam
dff lab.dff.nl.delayl =5 ,
dff_ lab.dff.n2.delay2 = 6 ;

// full-path referencing is used

// over-riding by using #(8,9) delayl=8..

dff d2 #(8,9) (outc, outd, clk, outb, rst);
// clock generator

always clk = #10 ~clk ;

// stimulus ... contd

Stimulus and Hierarchy example

initial begin: stimuli // named block stimulus
clk = 1; data = 1; rst = 0;
#20 rst = 1;
#20 data = 0;
#600 sfinish;
end

initial // hierarchy: downward path referencing

begin
#100 force dff.n2.rst = 0 ;
#200 release dff.n2.rst;
end
endmodule

6.2 User Defined Primitive (UDP) Declarations

The UDP's are used to augment the gate primitives and are defined by
truth tables. Instances of UDP's can be used in the same way as gate
primitives. There are 2 types of primitives:

1. Sequentiad UDP' s permit initialization of output
terminals, which are declared to be of reg type and they store values.
Level-sensitive entries take precedence over edge-sensitive
declarations. Aninput logic state z isinterpreted asan x. Similarly, only
0, 1, xor- (unchanged) logic values are permitted on the output.

2. Combinational UDP' s do not store values and cannot be
initialized.

The following additional abbreviations are permitted in UDP declara-
tions.

Quick Reference for Verilog HDL

L ogic/state Representation/transition Abbrevation
don’'t care (0, 1 or X) ?
Transitions from logic x to logic y (xy). (xy)
(01), (10), (0x), (1x), (x1), (x0)

(?1)

Transition from (01) R Orr

Transition from (10) F or £

(01), (0X), (X1): positivetransition P Or p

(10), (1x), (x0): negativetransition N Of n

Any transition * Or (??)

binary don’t care (0, 1) B Or b
Combinational UDP’s example

// 3 to 1 mulitplexor with 2 select

primitive mux32 (Y, inl, in2, in3, sl1, s2);

input inl, in2, in3, sl1, s2;
output Y;

table

//inl in2 in3 sl s2 Y
o 2 ? 0 0 : 0 ;
1 2 ? 0 0 : 1 ;
? 0 ? 1 0 : 0 ;
? 1 ? 1 o : 1 ;
? 2 0 ? 1 : 0 ;
? 2 1 ? 1 : 1 ;
0 0 ? ? 0 : 0 ;
1 1 ? ? 0o : 1 ;
o 2 0 0 ? : 0 ;
1 2 1 0 ? 1
? 0 0 1 ? 0 ;
? 01 1 1 ? 1 ;

endtable

endprimitive

Quick Reference for Verilog HDL

Sequential Level Sensitive UDP's example

// latch with async reset

primitive latch (g, clock, reset, data);
input clock, reset, data ;

output g;
reg gi;

initial g = 1'bl; // initialization

table

// clock reset data q, g+
? 1 ? ? 1 ;
0 0 0 ? 0 ;
1 0 ? ? ;
0 0 1 ? 1 ;

endtable

endprimitive

Sequential Edge Sensitive UDP's example

// edge triggered D Flip Flop with active high,
// async set and reset
primitive dff (QN, D, CP, R, S);

output ON;
input D, CP, R, S;
reg QON;
table
// D CP R S Qtn : Qtn+1

1 (01) O 0 ? 0;
1 (01) O X ? 0;
? 2 0 x 0 0;
0 (01) © 0 ? 1; // clocked data
0 (01) x O ? 1; // pessimism
? 02 x 0 1 1; // pessimism
1 (x1) 0 0 0 0;
0 (x1) 0 © 1 1;
1 (ox) O 0 0 0;
0 (0x) O 0 1 1;
? 2 1 2 ? 1; // asynch clear
? 0 1 ? 0; // asynchronous set
? n 0 0 ? -
*? ? ? ? ;
? ? (20) 2 ? -;
? 2 ? (20) ? -
? 2 ? 02 ? X;

endtable

endprimitive

Quick Reference for Verilog HDL

7.0 Expressions and Operators

Arithmetic and logical operators are used to build expressions. Expres-
sions perform operation on one or more operands, the operands being

vectored or scalared nets, registers, bit-selects, part selects, function
calls or concatenations thereof.

Unary Expression
<operator> <operar1d>

a = lb;

e Binary and Other Expressions
<operand> <operator> <operand>

if (a < b) // if (<expression>)
{c,d} = a + Db ;
// concatenate and add operator]

Parentheses can be used to change the precedence of
operators. For example, ((a+b) * c)

Operator precedence

Operator Precedence
+,-,1,~ (unary) Highest
* /%
+, - (binary)
<< >>
<, < =, >, >=
=, ==. l=
===, l==
&, ~&
[~
&&
¥ \j
?: Lowest

10

Quick Reference for Verilog HDL

* All operators associate |eft to right, except for the
ternary operator “ 2:” which associatesfromright to

left.
Relational Operators
Operator Application
< a <b // is a less than b?
// return 1-bit true/false
> a >b // is a greater than b?
>= a >=b // is a greater than or
// equal to b
<= a <= b // is a less than or
// equal to b
Arithmetic Operators
Operator Application
* c=a*Db; // multiply a with b
/ c=a/b; // int divide a by b
+ sum = a + b ; // add a and b
- diff = a - b ; // subtract b
// from a
% amodb = a $ b ; // a mod(b)
Logical Operators
Operator Application
&& a & b ; // is a and b true?

// returns 1-bit true/false

| a ||l b; // is a or b true?
// returns 1-bit true/false

! if (ta) ; // if a is not true
¢ =b ; // assign b to c

11

Quick Reference for Verilog HDL

Equality and I dentity Operators

Operator Application

= c =a ; // assign a to ¢

c ==a ; /* is c equal to a
returns 1-bit true/false
applies for 1 or 0, logic
equality, using X or Z oper-
ands returns always false
‘hx == ‘h5 returns 0 */

= c !=a ; // is c not equal to
// a, retruns 1l-bit true/
// false logic equality

=== a===b ; // is a identical to
// b (includes 0, 1, x, z) /
// ‘hx === ‘h5 returns 0

| == a !==b ; // is a not

// identical to b returns 1-
// bit true/false

Unary, Bitwise and Reduction Operators

Operator Application

+ Unary plus & arithmetic(binary) addition

- Unary negation & arithmetic (binary) sub-
traction

& b &a ; /I AND al bhitsof a

b = |a ; //ORalbits

~ b = "“a ; [/l Exclusiveor dl bitsof a

~&, ~|, NAND, NOR, EX-NOR all hits to-gether
- c=~8b;d=~|a;e="c;

~ &, |, " bit-wise NOT, AND, OR, EX-OR
b = ~a ; // invert a
c=b&a; // bitwise AND a,b

e=Db | a; // bitwise OR
f=b"a; // bitwise EX-OR
~&, ~|, bit-wise NAND, NOR, EX-NOR
~" c=a~&b;d=a~|b;
e=a-~"b ;

12

Quick Reference for Verilog HDL

Shift Operators and other Operators

Operator

Application

<<

a << 1 ; // shift left a by
// 1-bit

>>

a>>1; // shift right a by 1

c=sel ?a:b; /* if sel
is true ¢ = a, else ¢ = b ,
?: ternary operator */

{co, sum } = a + b + ci ;
/* add a, b, ci assign the
overflow to co and the re-
sult to sum: operator is
called concatenation */

{{th

b = {3{a}} /* replicate a 3
times, equivalent to {a, a,

a} */

7.1 Parallel Expressions

fork ... join are used for concurrent expression assignments.

fork ... join example
initial
begin: block
fork
// This waits for the first event a
// or b to occur
@a disable block ;
@b disable block ;
// reset at absolute time 20
#20 reset =1 ;
// data at absolute time 100
#100 data = 0 ;
// data at absolute time 120
#120 data = 1 ;
join
end

7.2 Conditional Statements

The most commonly used conditional statement istheif, if ... else...
conditions. The statement occurs if the expressions controlling the if
statement eval uates to true.

13

Quick Reference for Verilog HDL

if .. else ...conditions example

always @(rst)// simple if -else
if (rst)
// procedural assignment
q=0;
else // remove the above continous assign
deassign q;

always @(WRITE or READ or STATUS)
begin
// if - else - if
if (IWRITE) begin
out = oldvalue ;
end
else if (!STATUS) begin
g = newstatus ;
STATUS = hold ;

end

else if (!READ) begin
out = newvalue ;

end

end

case, casex, casez.case Statementsare used for switching
between multiple selections (if (casel) ... else if (case2)

else ...). If thereare multiple matchesonly thefirst isevalu-
ated. casez treats high impedance values as don’t care’'sand casex
treats both unknown and high-impedance as don’t care’s.

case Statement example

module d2X8 (select, out); // priority encode
input [0:2] select;
output [0:7] out;
reg [0:7] out;
always @(select) begin
out = 0;
case (select)

0: out[0] =
out [1] =
out [2] =
out [3] =
out [4] =
out [5] =
out [6] =
out [7] =

GO0 U AW N R
PR RRP PP R

endcase
end
endmodule

14

Quick Reference for Verilog HDL

casex Statement example

casex (state)
// treats both x and z as don’t care
// during comparison : 3'b0lz, 3’'b0lx, 3b’011
// ... match case 3’'b01lx
3'b01x: fsm = 0 ;
3'b0xx: fsm = 1 ;
default: begin
// default matches all other occurances
fsm = 1 ;
next state = 3’'b011 ;
end
endcase

casez Statement example

casez (state)
// treats z as don’t care during comparison
// 3'bllz, 3'blzz, ... match 3’b1l??: fsm = 0 ;
3’b1??: fsm =0 ; // 1f MSB is 1, matches 3?bl??
3'b01?: fsm = 1 ;
default: sdisplay(“wrong state”)

endcase

7.3 Looping Statements

forever, for, while and repeatloopsexanwﬂe

forever
// should be used with disable or timing control
@ (posedge clock) {co, sum} =a+ b + ci ;

for (1 =0 ; 1 < 7 ; 1i=1+1)
memory [i] = 0 ; // initialize to 0

for (i = 0 ; 1 <= bit-width ; i=i+1)
// multiplier using shift left and add
if (a[i]) out = out + (b << (i-1)) ;

repeat (bit-width) begin
if (a[0]) out = b + out ;
b b << 1 ; // muliplier using
a=a << 1l ; // shift left and add

end

while (delay) begin @(posedge clk) ;
ldlang = oldldlang ;
delay = delay - 1 ;

end

15

Quick Reference for Verilog HDL

8.0 Named Blocks, Disabling Blocks

Named blocks are used to create hierarchy within modules and can be
used to group a collection of assignments or expressions. disable
statement is used to disable or de-activate any named block, tasks or
modules. Named blocks, tasks can be accessed by full or reference
hierarchy paths (example dff lab.stimuli) .Named blocks can
have local variables.

Named blocks and disable statement example

initial forever @(posedge reset)
disable MAIN ; // disable named block
// tasks, modules can also be disabled

always begin: MAIN // defining named blocks
if (!qgfull) begin
#30 recv(new, newdata) ;
if (new) begin
g[head] = newdata ;
head = head + 1 ; // queue

// call task

end
end
else
disable recv ;
end // MAIN

9.0 Tasks and Functions

Tasks and functions permit the grouping of common procedures and
then executing these procedures from different places. Arguments are
passed in the form of input/inout values and al calls to functions and
tasks share variables. The differences between tasks and functions are

Tasks

Functions

Permits time control

Executes in one simulation
time

Can have zero or more argu-
ments

Require at least one input

Does not return value,
assigns value to outputs

Returns asingle value, no
special output declarations
required

Can have output arguments,
permits#, e, ->,

wait, task cdls.

Does not permit outputs,
#, @, task
cals

->, wait,

16

Quick Reference for Verilog HDL

task Example

task are declared within modules
task recv ;

output valid ;

output [9:0] data ;

begin
valid = inreg ;
if (valid) begin
ackin = 1 ;
data = gin ;
wait (inreg) ;
ackin = 0 ;
end
end

// task instantiation
always begin: MAIN //named definition
if (!gfull) begin
recv (new, newdata) ; // call task
if (new) begin
glhead] = newdata ;
head = head + 1 ;
end
end else
disable recv ;
end // MAIN

function Example

module foo2 (csg, inl, in2, ns);

input [1:0] cs;

input inl, in2;

output [1:0] ns;

function [1:0] generate_next_state;

input [1:0] current state ;

input inputl, input2 ;

reg [1:0] next state ;

// inputl causes 0->1 transition

// input2 causes 1->2 transition

// 2->0 illegal and unknown states go to 0

begin
case (current_state)
2'h0 : next_state = inputl ? 2'hl : 2'h0 ;
2’hl : next_state = input2 ? 2'h2 : 2'hl ;
2'h2 : next state = 2’h0 ;
default: next state = 2’'h0 ;

endcase

generate_next state = next_state;

end

endfunction // generate next state

assign ns = generate next state(cs, inl,in2)
endmodule

i

17

Quick Reference for Verilog HDL

10.0 Continous Assignments

Continous assignments imply that whenever any change on the RHS of
the assignment occurs, it is evaluated and assigned to the LHS. These
assignments thus drive both vector and scalar values onto nets. Conti-
nous assignments aways implement combinational logic (possibly
with delays). The driving strengths of a continous assignment can be
specified by the user on the net types.

e Continous assignment on declaration

/* since only one netl5 declaration exists in a
given module only one such declarative continous
assignment per signal is allowed */

wire #10 (atrongl, pull0) netl5 = enable ;
/* delay of 10 for continous assignment with

strengths of logic 1 as strongl and logic 0 as
pullo */

e Continous assignment on aready declared nets

assign #10 netl5 = enable ;
assign (weakl, strong0) {s,c} = a + b ;

11.0 Procedural Assignments

Assignments to register data types may occur within always, ini-
tial, task and functions . These expressions are controlled by
triggers which cause the assignments to evaluate. The variablesto
which the expressions are assigned must be made of bit-select or part-
select or whole element of areg, integer, real oOr time. Thesetrig-
gerscan be controlled by loops, 1£, else ...constructs. assign and

deassign areused for procedural assignments and to remove the con-
tinous assignments.

module dff (qg,gb,clk,d, rst);
output g, gb;
input d, rst, clk;
reg q, gb, temp;
always

#1 gb = ~q ; // procedural assignment

always @(rst)
// procedural assignment with triggers
if (rst) assign g = temp;
else deassign q;

always @ (posedge clk)
temp = d;
endmodule

18

Quick Reference for Verilog HDL

force and release arealso procedural assignments. However, they
can force Of release valueson net datatypes and registers.

11.1 Blocking Assignment

module adder (a, b, ci, co, sum,clk) ;
input a, b, ci, clk ;
output co, sum ;
reg co, sum;
always @(posedge clk) // edge control
// assign co, sum with previous value of a,b,ci
{co,sum} = #10 a + b + ci ;

endmodule

11.2 Non-Blocking Assignment

Allows scheduling of assignments without blocking the procedural
flow. Blocking assignments allow timing control which are delays,
whereas, non-blocking assignments permit timing control which can be
delays or event control. The non-blocking assignment is used to avoid
race conditions and can model RTL assignments.

/* assume a = 10, b= 20 ¢ = 30 d = 40 at start of
block */

always @ (posedge clk)
begin:block

a <= #10 b ;
b <= #10 ¢ ;
c <= #10 4 ;

end

/* at end of block + 10 time units, a = 20, b = 30,
c = 40 */

12.0 Gate Types, MOS and Bidirectional
Switches

Gate declarations permit the user to instantiate different gate-types and
assign drive-strengths to the logic values and also any delays

<gate-declaration> ::= <components>
<drive strength>? <delay>? <gate instance>
<,?<gate_instance..>> ;

19

Quick Reference for Verilog HDL

Gate Types Component
Gates Allows and, nand, or,
strengths nor, Xor, Xnor
buf, not
Three State Allows buifo,bufifl
Drivers strengths notif0,notifl
MOS No strengths nmos , pmos, Cmos,
Switches rnmos, rpmos, remos
Bi-directional No strengths, tran, tranifo,
switches non resistive tranifl
No strengths, rtran,rtranifo,
resistive rtranifl
Allows pullup
strengths pulldown

Gates, switch types, and their instantiations

cmos 11 (out, datain, ncontrol, pcontrol);
nmos i2 (out, datain, ncontrol) ;

pmos i3 (out, datain, pcontrol) ;
pullup (neta) (netb);

pulldown (netc);

nor i4 (out, inl, in2, ...);

and i5 (out, inl, in2, ...);

nand ié (out, inl, in2, ...);

buf 17 (outl, out2, in);

bufifl i8 (out, in, control);

tranifl i9 (inoutl, inout2, control) ;

Gate level instantiation example

// Gate level instantiations
nor (highzl, strong0) #(2:3:5) (out, inl,
in2) ;
// instantiates a nor gate with out
// strength of highzl (for 1) and
// strong0 for 0 #(2:3:5) is the
// min:typ:max delay

pullupl (strongl) netl;

// instantiates a logic high pullup
cmos (out, data, ncontrol, pcontrol);
// MOS devices

20

Quick Reference for Verilog HDL

The following strength definitions exists
e A4drivestrengths (supply, strong, pull,
weak)
» 3capacitor strengths (large, medium, small)

e 1highimpedance state highz

The drive strengths for each of the output signals are

e Strength of an output signal with logic value 1
supplyl, strongl, pulll, largel, weakl,
highzl

e Strength of an output signal with logic value 0
supply0, strong0, pull0, large0, weakO,

highz0
Logic 0 Logic 1 Strength
supply0 Suo supplyl Sul 7
strong0 Sto strongl Stl 6
pullo Puo pulll Pul 5
large La0 large Lal 4
weak0 WeO weakl Wel 3
medium MeO medium Mel 2
small SmO0 small Sml 1
highzo HiZO0 highzl HiZO0 0
12.1 Gate Delays

The delays alow the modeling of risetime, fall time and turn-off
delays for the gates. Each of these delay types may be in the min:typ:-
max format. The order of thedelaysare # (trise, tfall, tturn-
off) . For example,

nand #(6:7:8, 5:6:7, 122:16:19)
(out, a, b);

21

Quick Reference for Verilog HDL

Delay Model

(delay) min:typ:max delay

(delay, delay) rise-time delay, fall-time delay,
each delay can be with
min:typ:max

(delay, delay, delay) rise-time delay, fal-time delay
and turn-off delay, each min:t-
yp:max

For trireg, thedecay of the capacitive network is modeled using the
rise-time delay, fall-time delay and charge-decay. For example,

trireg (large) #(0,1,9) capacitor
// charge strength is large
// decay with tr=0, tf=1, tdecay=9

13.0 Specify Blocks

A specify block is used to specify timing information for the modulein
which the specify block is used. Specparams are used to declare delay
constants, much like regular parameters inside a module, but unlike
module parameters they cannot be overridden. Paths are used to declare
time delays between inputs and outputs.

Timing Information using specify blocks

specify // similar to defparam, used for timing
specparam delayl = 25.0, delay2 = 24.0;

// edge sensitive delays -- some simulators
// do not support this
(posedge clock) => (outl +: inl) =
(delayl, delay2) ;
// conditional delays
if (OPCODE == 3'h4) (inl, in2 *> outl)
= (delayl, delay2) ;
// +: implies edge-sensitive +ve polarity
// -: implies edge sensitive -ve polarity
// *> implies multiple paths

// level sensitive delays
if (clock) (inl, in2 *> outl, out2) = 30 ;
// setuphold
$setuphold (posedge clock &&& reset,
inl &&& reset, 3:5:6, 2:3:6);
(reset *> outl, out2) = (2:3:5,3:4:5);

endspecify

22

Quick Reference for Verilog HDL

Verilog

Synthesis Constructs

Thefollowing is a set of Verilog constructs that are supported by most
synthesis tools at the time of thiswriting. To prevent variations in sup-
ported synthesis constructs from tool to tool, thisis the least common
denominator of supported constructs. Tool reference guides cover spe-
cific constructs.

14.0 Verilog Synthesis Constructs

Sinceit is very difficult for the synthesis tool to find hardware with
exact delays, al absolute and relative time declarations are ignored by
the tools. Also, all signals are assumed to be of maximum strength
(strength 7). Boolean operationson x and z are not permitted. The
constructs are classified as

* Fully supported constructs — Constructs that are
supported asdefined inthe Verilog Language Reference
Manual

* Partially supported — Constructs supported with
restrictions on them

* Ignored constructs — Constructsthat are ignored by the
synthesis tool

* Unsupported constructs — Constructs which if used,
may cause the synthesis tool to not accept the Verilog
input or may cause different results between synthesis
and simulation.

14.1 Fully Supported Constructs

<module instantiation,

with named and positional notationss>
<integer data types, with all bases>
<identifiers>
<subranges and slices on right-hand

side of assignments>
<continuous assignmentss>
>>,<<,?:{}
assign (procedural and declarative), begin, end
case, casex, casez, endcase
default

23

Quick Reference for Verilog HDL

disable

if, else, else if

wire, wand, wor,

integer, reg

parameter

supply0, supplyl
task, endtask

function, endfunction

input, output, inout

macromodule, module

14.2 Partially Supported Constructs

Construct Constraints
*, /% when both operands constants,
or 2nd operand power of 2.
always only edge-triggered events.

bounded by static variables:
only use“+” or“-" toindex.

posedge, negedge

only with always @

primitive,
endprimitive
table,endtable

Combinational and edge-sen-
sitive user defined primitives
are often supported.

limitations on usage with
blocking assignment.

and, nand, or,
nor, xor, Xnor,
buf, not, buifo,
bufifl,notifo,

gate types supported
without X or Z constructs

notifl

b, &&, ||, ~, &, operatorssupported without X
[, =0 "~ =7 g, or Z constructs

~l+ - < >

<=, >=, ==, l=

24

Quick Reference for Verilog HDL

14.3 Ignored Constructs

<intra-assignment timing controlsx>

<delay specifications>

scalared, vectored

small, large, medium

specify

time (some tools treat these as integers)

weakl, weakO, highz0, highzl, pull0, pulll

Skeyword (some tools use these to set
synthesis constraints)

wait (some tools support wait with a

bounded condition)

14.4 Unsupported Constructs

<assignment with variable used as bit select
on LHS of assignments>

<global variables>

===, l==

Cmos, nNmos, rCmos, ¥YNmos, Pmos, IYPmos

deassign

defparam

event

force

fork, join

forever, while

initial

pullup, pulldown

release

repeat

rtran, tran, tranif0, tranifl, rtranifo,
rtranifl

table, endtable, primitive, endprimitive

All rights reserved. Please send any feedback to the author.
Verilog® is aregistered trademark of Cadence Design Sys-
tems, Inc.

25

Quick Reference for Verilog HDL

- NOTES -

26

Quick Reference for Verilog HDL

Symbols

$display, $write 5
$fdisplay, Sfwrite 5
$finish 5

$getpattern 5

$history 5

$hold, $width 5

$monitor, $fmonitor 5
$readmemb, $readmemh 5
$save, $restart, $incsave 5
$scale 5

$scope, $showscopes 5
$setup, $setuphold 5
$showvars 5
$sreadmemb/$sreadmemh 5
$stop 5

$strobe, $fstrobe 5

$time, $reatime 5

**/1

11
‘autoexpand_vectornets 4
‘celldefine, ‘endcelldefine 4
‘default_nettype 4

‘define 4
‘expand_vectornets 4
‘noexpand_vectornets 4
‘ifdef, ‘else, ‘endif 4
‘include 4
‘nounconnected_drive 4
‘protect, ‘endprotect 4
‘protected, ‘ endprotected 4
‘remove_gatename 4
‘noremove_gatenames 4
‘remove_netname 4
‘noremove_netnames 4
‘resetall 4

‘signed, ‘unsigned 4
‘timescale 4

‘unconnected drive 4

A
Arithmetic Operators 11
B

Binary Expressions 10
blocking assignment 19

C

case 14

casex 14

casez 14

compiler directives 3
continous assignments 18

D

delays21
disable 16

E

Equality Operators 12
Escaped identifiers 1
Expressions 10

F

for 15

forever 15

fork ... join 13

Fully Supported Synthesis Con-
structs 23

function 16

G

Gate declaration 19
gate-types 19

if, if ... else 13
Integer literals 1
Identity Operators 12

L
Logical Operators 11
M

Memories 3
module 6

N

Named blocks 16
Nets 2
non-blocking assignments 19

27

Quick Reference for Verilog HDL

@) \

Operator precedence 10 vectored 3

P w

Partidly Supported Synthesis wait 16
Constructs 24 wand 3

procedural assignments 18 while 15

pulldown 3 wire 2

pullup 3 wor 3

R X

reg, register 2 X, X1

Relational Operators 11

repeat 15 z

reserved words 5 271

S

scalared 3

Sequential edge sensitive UDP 9
Sequential level sensitive UDP 9
Shift, other Operators 13

specify block 22

specparam 22

String symbols 1

supply0 3

supplyl 3

switch types 20

Synthesis Constructs 23
Synthesis Ignored Constructs 25
Synthesis Unsupported Con-

structs 25

T

task 16

tri0 3

tril3

triand 3

trior 3

trireg 3

U

UDP7

Unary Expression 10

Unary, Bitwise and Reduction
Operators 12

28

Verilog HDL Publications Order Form

Automata Publishing Company
1072 S. Saratoga Sunnyvale Rd., Bldg. A107, Ste 325,
San Jose CA-95129. U.SA
Phone: 408-255-0705 Fax: 408-253-7916

Verilog Publications:
Publication 1.Digital Design and Synthesis with Verilog HDL
Publication 2.Digital Design and Synthesis with Verilog HDL +
Source diskette + Quick Reference for Verilog HDL

Name: Title:

Company:

Address:

City:

State: Zip:

Ph: Fax:
Publication 1 2

Quantity

Price per book (see below)

Shipping (see below)

Salex Tax (CA residentsonly,
@current rate)

Total amount due

P.O Number if any:

Charge my VisssMC/AMEXp. #

Expires on:
Publication 1 2
Qty-Price/copy | (US$) (US$)

1-4 59.95 65.95
5-9 54.95 60.95

10-19 49.95 54.95

20- 44 44.95 49.95

45 - 99 39.95 44.45

100 - 500 34.95 39.00

Shipping/copy | 3.00 3.00

For large volume discounts contact Automata Publishing Company

Quick Reference

for

Verilog® HDL

Rajeev Madhavan

Thisisabrief summary of the syntax and semantics of
the Verilog Hardware Description Language. The
reference guide describes all the Verilog HDL constructs
and also lists the Register-Transfer Level subset of the
Verilog HDL which isused by the existing synthesis
tools. Examples are used to illustrate constructs in the
Verilog HDL.

Automata Publishing Company, San Jose, CA 95129

ISBN 0-9627488-4-6

